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Abstract—In this work, we provide a statistical procedure to
integrate expert preferences towards explanatory variables in
stepwise forward regression. The proposed method builds on
the traditional stepwise linear regression and goal programming.
The procedure is validated experimentally for real-life data from
various sources aiming at predicting air pollution. The practical
goal is to predict the annual concentrations of two health-
related air pollutants, namely PM10 (Particulate Matter that is
10 micrometers or less in diameter) and NO2 (Nitrogen Dioxide).
The main finding from this work is that inclusion of expert
knowledge leads to more robust and accurate predictive models.
Considering the limited size of data from air pollution monitoring
stations, additional expert knowledge enabled to select most
meaningful explanatory variables, and as the consequence the
statistical inference lead to the improved predictions. The main
contribution of this work is the proposed simple but solid
expert-in-the-loop stepwise forward linear regression method
allowing to include expert preferences. Experiments confirm
that the proposed procedure is not only more interpretable but
also delivers more accurate predictions for the considered air
pollutants concentrations.

Index Terms—stepwise regression, linear programming,
expert-in-the-loop, land-use regression, goal programming, in-
telligent data analysis, air pollution modeling

I. INTRODUCTION

Recent study has shown that different statistical algorithms
perform similarly when modelling annual average air pollution
concentrations using a large number of training sites [1]. At the
same time, one of the problems reported was missing variables
resulting in limited size of the sample used for this supervised
learning task. To alleviate this problem, we present a method
that integrates knowledge of domain experts into the statistical
inference.

In this work, we focus on the linear stepwise regression
due to its simplicity. Contrary to the black-box algorithms,
regression models are usually easier to interpret, both in terms
of included predictors and the magnitude and direction of ef-
fects. As a starting point, we consider the supervised stepwise
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linear regression. Such class of models was applied previously
for the considered air pollution monitoring problem, see e.g.,
de Hoogh et al. [2], [3]. However, we observed that if this
procedure is performed on a relatively small samples, the
resulting models might be overfitted. Therefore, the main
contribution of this work is the proposed approach that enables
to improve the training process with expert knowledge. In
particular, we collect preferences expressed by the domain
experts towards the explanatory variables to be included in the
predictive modeling. Next, we run the goal programming to
find the best balance between the quality of models (measured
for example with the adjusted R2 of the training data) and the
expert preference towards a variable.

The paper is organized as follows. In the second section,
we present the motivating example for this work that is
predicting air pollution concentrations to be considered for the
epidemiological models. In the third section, we present the
proposed statistical procedure that integrates expert knowledge
into the predictive models. The main results of this research
are presented in the fourth section of the paper where we
demonstrate selected properties and a summary of models
performance. The paper is concluded in its last section.

II. MOTIVATING EXAMPLE: PREDICTION OF THE AIR
POLLUTANTS’ ANNUAL CONCENTRATIONS

Air pollution affects various health issues all over the
world. For example, in [4], the authors quantify this healthy
burden for the area of Warsaw. A recent review [5] concludes
that the observed increased air pollution levels are linked
to increased general and respiratory disease mortality rates,
higher prevalence of respiratory diseases, including asthma,
lung cancer, etc. Characteristics of these links between air
pollution and health are still subject to ongoing research. For
example, the impact of air pollution on the developing brain is
investigated within a recent NeuroSmog project [6] with focus
on the area of southern Poland (see Figure 1). Among various
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air pollutants, PM 10 (Particulate Matter that is 10 micrometers
or less in diameter), PM2.5 and NO2 (Nitrogen Dioxide) are
regarded to have an important impact on health aspects.
Although various strategies are implemented for mitigating
emissions, see e.g., [7] concentrated on the area of Warsaw,
according to the World Bank Group over half of the 50 most
polluted cities in the European Union are located in Poland.
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Figure 1. Visualisation of air pollution monitoring stations in the considered
study area of the three voivodeship in the southern Poland (Silesian voivode-
ship, Opole voivodeship and Lesser Poland voivodeship).

The possibilities to collect data related to air pollutants
from sensors have grown significantly in the recent years,
see e.g., [8]. Nonetheless, epidemiologists often need air
pollution estimates for historic years, and such sensor data
are often not available for longer history. Furthermore, it
also needs to be noted that various works on the physical
models of air pollutants’ distribution have been published, e.g.,
EMEP4PL [9]. However, atmospheric dispersion modelling
often becomes computationally complex, and thus, infeasible
to be performed with very fine spatial resolution. Also, in the
considered applied scenario, only the annual estimates of the
air pollution are needed.

III. THE PROPOSED METHOD: EXPERT-IN-THE-LOOP
STEPWISE LINEAR REGRESSION

Let us consider the following multivariate linear regression:
y=XpB+e (D

where y is an m x 1 vector consisting of air pollutant
concentrations, each of which corresponds to one monitoring
station and the annual mean of the air pollutant. Measured
concentrations of PM10 or NO2 are used as the response
vectors, X is a m X s covariate matrix of the s explana-
tory variables (regression coefficients) related to the land-use,
roads, emissions, etc., and ¢ is the vector of m errors which
is assumed to be multivariate normal with zero mean. For
more details related to linear regression models and statistical
inference, see e.g., the seminal book of Hastie et al. [10].
Proper selection of subset of explanatory variables from X
may become a challenging task if the size of the training
data is limited. Thus, we extend the stepwise forward linear
regression technique applied previously in this domain by de
Hoogh et al. [2], [3]. We denote this model as SLR. In [2], a

univariate linear regression model was run for each potential
predictor to choose the model with the highest adjusted R2
as the starting point. Additional significant predictor variables
were allowed to enter the model if they added to the adjusted
R2 of the previous model step, and only if they adhered to
the plausible direction of effect. Nonetheless, as we observe,
if SLR procedure is performed on a relatively small samples,
the resulting models might be overfitted.

Firstly, we propose to modify the procedure and to repeat-
edly check whether variables enter the models. We denote this
approach as ADV_SLR. We consider again as candidates for
variables those ones that have been already rejected in the
previous loop, except for the predictors which are included in
a temporary best model.

Secondly, as we observe, there are situations for both
aforementioned methods when variables are similarly good
candidates to enter the model, and the selection is based
purely on adj R2 that might be affected by outliers. Thus, we
introduce Expert-in-the-loop Stepwise Linear Regression
(EXP_SLR) method and we add variables to model using the
goal programming. The final model shall represent optimal
performance and selection of variables preferred by expert.

The proposed EXP_SLR algorithm is a forward stepwise
regression and Algorithm 1. details its steps. It continues to
select the most adequate variable to enter the model using goal
programming instead of the model with the highest metric.
Goal programming considers model performance (e.g., R2)
and expert preferences pref_exp towards each explanatory
variable X. Those preferences need to be provided a priori,
e.g., as a list of expert ratings. Additionally, user defines
weight w, expressing their preference towards expert knowl-
edge over model evaluation metrics. Once we identify best
candidate for next variable to enter the model, we validate
whether the new model fulfils the required assumptions. In
particular, p values of all variables are checked, sign of the
coefficients is also validated (direction of effects need to meet
the expectations of expert). Then, homoscedasticity of variance
and normality of residuals are checked through analysis of
residuals and inspection of quantile-quantile plots. Finally,
the algorithm iterates until all candidates for variables are
considered. The main steps of the goal programming are as
follows:

1. Min-Max scale adjusted R2 from all models in current
iteration

2. Min-Max scale preferences of expert

3. Calculating the distance dispo between scaled adjusted
R2 and 1

4. Calculating the distance dis.,, between scaled prefer-
ences of expert and expedient value

5. Finding the minimal value for the equation:

Wg2 * diSR2 + We * diSeqp 2)

where w, is the weight, and we calculate wgro=1-w,
which is the weight for the objective evaluation metrics.
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Algorithm 1. Expert-in-the-loop Stepwise Linear Regres-
sion Input: Y, data X, pref_exp, «, we
Initialize: temp_rej[], selected[], temp_best

Output: best,,oder

1.1 all_candidates = {predy, preds, ..., pred,}
2.1 While TRUE:
selected|] = ( set(all_candidates[]) -

set(temp_best.variables) ) - set(temp_rej[])

2.2.1 If length(selected[]) == O:
bestmoder = temp_best

break

2.2.2 For i in selected]]:
models|] = LinearRegression(Y,

temp_best.variables,i)

2.2.3 model_cand = GoalProgramming(models(],
pref_exp, we)
Unless univariate model:

2.2.4 If (AdjR2(model_cand) - AdjR2(temp_best)) < « :

bestmoder = temp_best

break
2.2.5 validate model_cand:

2.2.6.1 p values of predictors and direction of effects
2.2.6.2 collinearity (VIF) - unless univariate model
2.2.6.3 homoscedasticity of variance

2.2.6.4 normality of residuals

2.2.7 If model_cand validated:
temp_best = model_cand
temp_rej[].clear()

2.2.8 Else if model_cand NOT validated:

temp_rej[].append(model_cand.variables)

temp_rej[] - is a list of variables which are append in
a situation, when searching model do not fulfil conditions.
This list is cleared when any model is validated and after this,
algorithm begin another loop.

temp_best - is a temporary the best validated model
selected[] - is a list of variables (candidates). There are some
possibilities of containing candidates in it:
« all candidates if it is iteration finding univariate model
« all candidates without variables in temp_rej[] if it still
iterate to find properly univariate model.
« all candidates without variables in temp_best if it is new
loop
« all candidates without variables in temp_best and without
variables in temp_rej|| if temp_best did not change after
iteration

IV. RESULTS
A. Explanatory variables

We illustrate the performance of the proposed EXP_SLR
method for real-life data from various sources including air
pollution monitoring stations, satellite images and sensors.
The main groups of predictor variables considered in this
study (and according to the study protocol, please see Table
3 in [6]) are as follows:

(i) traffic and residential emissions of air pollutants;

(i1) data about land-use from the Corine Land Cover database
[11] including indicators such as, e.g., anthropogenic area,
rural area, forest and wooded area, surface water, vegetation
and agricultural area, undeveloped area;

(iii) road data, e.g., type of road (e.g., highway, expressway,
main road etc.);

(iv) estimates from the atmospheric dispersion modelling
following [9].

All explanatory variables are calculated for the following 7
grid cell sizes (from A to G):

o grid A: approx. 4km x 4km,

o grid B: approx. 2km x 2km,

e grid C: approx. lkm x 1km,

o grid D: approx. 500m x 500m,

o grid E: approx. 250m x 250m,

o grid F: approx. 125m x 125m

o grid G: approx. 62.5m x 62.5m.
Figure 2 illustrates the splitting mechanism.
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Figure 2. Illustration of region split into grid cell sizes

In experiments, we build stepwise regression models for
various grid cell sizes independently to verify if the inclusion
of expert knowledge is robust to the dataset spatial resolution
(grid cell size).
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B. Expert preferences

Data from domain expert were collected in the form of a
three point scale. Options included low priority, medium prior-
ity and high priority. Expert evaluated his/her priority towards
a variable to be included in predictive model. For example, all
variables related to estimates from the atmospheric dispersion
modelling were rated as high priority. Similarly was assessed
main roads and wooded areas. On the contrary, some land-use
variables such as e.g., surface water areas were considered as
low priority. There were also several variables which expert
marked as medium to high priority expressing his hesitation.
We considered this rating as 2.5.

C. Illustrative example

We now provide an illustrative example of the step by step
performance of the stepwise regression method based on crisp
criteria such as e.g., R2. For example, let us consider data set
for PM10 in grid C. Figure 3 shows the transcript from the
inference with the baseline ADV_SLR method without expert
preferences and from the regression with expert EXP_SLR.

DATASET: PM10, Grid C,

METHOD: ADV_SLR

CHECK: PM10_dispersion

CHECK: PM10_dispersion+SKJZ06

CHECK: PMI10 dispersion+SKJZ06+CLC3 111

CHECK: CLC3_111+PM10_dispersion+SKJZ06+CLC3_141

CHECK: CLC3_111+CLC3_141+PM10_dispersion+SKJZ06+SKJZ01

FEATURES SELECTED:
1. 'crLc3_111',
2., 'CLC3_141',
3. 'PM10 dispersion',
4. 'SKJZ06'

R2_adj: 0.657

MAE value on TRAIN data: 3.12
MAPE value on TRAIN data: 0.08
MAE value on TEST data: 4.31
MAPE value on TEST data: 0.12
DATASET: PM10, Grid C,

METHOD : EXP_SLR

W_E (PRIORITY): 0.7 ———————- >35>

CHECK: PM10_dispersion

CHECK: PM10_dispersion+sSKJzZ06

CHECK: PM10_dispersion+SKJZ06+SKJZ05

CHECK: SKJZ05+PM10_dispersion+SKJZ06+SKJZ01

FEATURES SELECTED:

1. '"SKJZ05"
2. '"PM10_dispersion’
3. 'SKJz06'

R2_adj: 0.629

MAE value on TRAIN data: 3.31
MAPE value on TRAIN data: 0.08
MAE value on TEST data: 4.07
MAPE value on TEST data: 0.11

Figure 3. Logs of the step by step performance of the ADV_SLR and
EXP_SLR methods for an exemplary dataset PM10, grid C.

As observed in Fig. 3, for ADV_SLR, the PM10_dispersion
was the first variable to enter the model. Next, SKJZ06
(local roads) had been chosen according to adj R2 and after
validating the model, it also entered. Then, CLC3_111 (urban

area) was included. Finally, CLC3_141 (green area) entered
the model.

Next, let us consider that we assign expert weight w, to
0.7. Let us see the step-by-step performance of the proposed
EXP_SLR stepwise regression with expert-in-the-loop on
the same dataset. Similarly, we start from PM10_dispersion.
Then, the model adds SKJZ06 (local roads, priority high).
However, instead of any land-use variable, the next check is
related to another variable about roads that is SKJZ05 (main
roads, priority high). We can also check that the variables
related to the green areas and urban areas were assigned a
medium priority by the expert. We see that the performance
of ADV_SLR model is slightly higher for the training data,
e.g., MAE of 3.12 for ADV_SLR and 3.31 for EXP_SLR).
However, for the test data we observe the opposite relation,
e.g., MAE of 4.31 for ADV_SLR and 4.07 for EXP_SLR).

D. Validation

The proposed method is designed to deliver more in-
terpretable models by inclusion of variables that are most
preferred. However, apart from the interpretability aspects, the
accuracy of the proposed method needs to be investigated. In
next experiments, we aim at discovering if inclusion of expert
knowledge for the stepwise regression modeling influences the
accuracy of predictions. Let us start from reviewing the R2 for
the training set and checking whether inclusion of the expert
knowledge influences the training phase. Table I shows R2 for
the TRAIN set.

Results in Table I are averages from models built on 80% of
the monitoring sites with the remaining 20% used for valida-
tion. To evaluate the performance of the proposed approach,
we repeated 10 times the random selection of training and
test sets. As observed, the highest mean R2 (averaged across
all grid cell sizes) for NO2 amounts 0.79 and is observed for
SLR and ADV_SLR methods. For PM10 it amounts to 0.59
and is achieved by the ADV_SLR method. The second highest
R2 are usually obtained by EXP_SLR with w.=0.5 and 0.6.
The differences in R2 are overall small considering that these
results are calculated for the training sets.

Next, to test the robustness and the stability of the proce-
dure, we calculate the mean absolute error (MAE) and mean
absolute percentage error (MAPE). Table II and Table III show
these metrics for the TRAIN and TEST sets of PM10 and
NO2, respectively.

An average of mean absolute error with PM10 and NO2 of
SLR is almost always better on train data of each grid cell
size (A, B, C ...). The opposite situation is observed on the
TEST data. For example, for the TRAIN data, the average
MAE is smallest for the ADV_SLR method and amounts to
3.43. At the same time, for the considered PM10, the mean
MAE for the TEST set amounts to 5.26 and is achieved by
the EXP_SLR method with weights of 0.8 and 0.9. For the
TEST set, MAPE is also smaller for the EXP_SLR method
than for the SLR. Similarly, we observe that standard deviation
of errors is smaller for the method with expert preferences.
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Table 1
ADJUSTED R2 ON TRAIN DATA (AVERAGED FROM K=10 ITERATIONS) AT
VARIOUS GRID CELL SIZES WHEN MODELING NO2 AND PM10
CONCENTRATIONS WITH STEPWISE LINEAR REGRESSION SLR, STEPWISE
LINEAR REGRESSION WITH MORE REPETITIONS TO INCLUDE NEW
VARIABLES IN MODEL ADV_SLR AND THE PROPOSED STEPWISE LINEAR
REGRESSION WITH EXPERT PREFERENCES EXP_SLR WITH WEIGHTS we,
FROM {0.5.,0.6,0.7,0.8,0.9}. TRAIN ARE THE MEAN VALUES ACROSS
ALL GRID CELL SIZED CALCULATED FOR THE TRAIN SET.

NO2 Adj R2
Method A B C D E F G TRAIN
SLR 0.88 | 0.84 | 0.82 | 0.74 | 0.75 | 0.76 | 0.75 | 0.79
ADV_SLR 0.88 | 0.84 | 0.82 | 0.74 | 0.75 | 0.76 | 0.75 | 0.79
EXP_SLR | w.e=0.5]087 | 085|080 | 073|074 | 076 | 0.75 | 0.78
EXP_SLR | w_e=0.6 | 086 | 0.85 | 0.79 | 0.73 | 0.74 | 0.76 | 0.75 | 0.78
EXP_SLR | w_e=0.7 | 083 | 0.82 | 0.76 | 0.73 | 0.73 | 0.75 | 0.75 | 0.77
EXP_SLR | w.e=0.8|077 | 071 | 0.74 | 0.73 | 0.67 | 0.75 | 0.74 | 0.73
EXP_SLR | w.e=0.9 077 | 071 | 0.74 | 0.73 | 0.67 | 0.75 | 0.74 | 0.73
PM10 Adj R2
Method A B C D E F G TRAIN
SLR 0.56 | 0.59 | 0.61 | 0.59 | 0.59 | 0.58 | 0.55 | 0.58
ADV_SLR 0.56 | 0.59 | 0.64 | 0.59 | 0.59 | 0.59 | 0.56 | 0.59
EXP_SLR | w.e=0.5 054|059 | 0.64 | 0.59 | 0.58 | 0.58 | 0.56 | 0.58
EXP_SLR | we=06| 052|059 | 0.64 | 059 | 0.58 | 0.57 | 0.55 | 0.58
EXP_SLR | w_e=0.7 | 052 | 0.57 | 0.63 | 0.58 | 0.56 | 0.56 | 0.54 | 0.56
EXP_SLR | w_e=0.8 | 0.51 | 0.55 | 0.60 | 0.58 | 0.56 | 0.56 | 0.54 | 0.56
EXP_SLR | w_e=0.9 | 051 | 0.55 | 0.60 | 0.58 | 0.56 | 0.56 | 0.54 | 0.56
NO2 std dev of Adj R2
Method A B C D E F G TRAIN
SLR 0.02 | 0.04 | 0.08 | 0.07 | 0.07 | 0.07 | 0.05 | 0.06
ADV_SLR 0.02 | 0.05 | 0.08 | 0.07 | 0.07 | 0.07 | 0.05 | 0.06
EXP_SLR | w_e=0.5|0.03 | 0.04 | 0.08 | 0.08 | 0.06 | 0.07 | 0.06 | 0.06
EXP_SLR | w_e=0.6 | 0.03 | 0.04 | 0.08 | 0.08 | 0.06 | 0.07 | 0.06 | 0.06
EXP_SLR | w_e=0.7 | 0.07 | 0.06 | 0.08 | 0.08 | 0.06 | 0.07 | 0.06 | 0.07
EXP_SLR | w_e=0.8 | 0.08 | 0.08 | 0.07 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07
EXP_SLR | w_e=0.9 | 0.08 | 0.09 | 0.07 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07
PMI10 std dev of Adj R2
Method A B C D E F G TRAIN
SLR 026 | 0.19 | 0.13 | 0.16 | 0.20 | 0.25 | 0.23 | 0.20
ADV_SLR 0.26 | 0.19 | 0.13 | 0.16 | 0.20 | 0.26 | 0.23 | 0.20
EXP_SLR | w_e=0.5]025]019 | 013 | 0.16 | 021 | 0.25 | 0.23 | 0.20
EXP_SLR | w_e=0.6 | 023 ]0.19 | 0.13 | 0.16 | 0.21 | 0.25 | 0.22 | 0.20
EXP_SLR | we=07 023|018 | 0.14 | 0.18 | 0.21 | 0.26 | 0.25 | 0.21
EXP_SLR | we=08 023|018 | 0.13 ] 0.18 | 021 | 026 | 0.25 | 0.21
EXP_SLR | w.e=09 022018 | 0.13 | 0.18 | 021 | 0.26 | 0.25 | 0.20

Finally, the differences between MAE of mean train and
test data (the last two columns) are smaller with EXP_SLR
methods with various weights than SLR method. It might be
related to the fact that this method allows better generalisation.
Exactly the same situation is apparent with results of mean
absolute percentage error as in MAE.

Experimental results gathered in Tables II and III show also
that for NO2 there are more models overtrained than for PM10
due to low amount of training data. for some meshes it is better
to use the function with an expert, because though adj R2 may
be slightly worse for some particular grid cell size, MAE and
MAPE for the TEST set return equal or better.

The proposed method requires to set up prior weight towards
expert knowledge. Figure 4 show results of simulations that
aimed to show the influence of prior weights on the outputs.

Plots gathered in Figure 4 illustrate with simulations the
relation between the prior parameters w, and the expert
preference towards the candidate variable on the objective
function. Each line corresponds to one option regarding expert
preferences (preference 1 is for low, 2 for medium, 2.5 for

Poland, 2022, pp. 1-7, doi: 10.1109/IS57118.2022.10019609

Figure 4. Simulated impact of we on the objective function and the expert
preference towards the candidate variable. Four scenarios are considered
having we=0.6, 0.7, 0.8, 0.9, respectively.

medium/high and 3 for high). Lines show the ranges from the
minimum (i.e. the best) to maximum (i.e. worst) value for the
equation wro*dis o +We*diSeyp, What the feature of the given
priority can achieve. Distance disps is our absolute[(Min —
mazscaledR2adjusted) — 1] and diseyy is absolute[(Min —
maxscaledpreferences) — expedient_value]. We observe
various slopes of lines depending on what are the values of
the initial w.. The higher weight w. we confer, the smaller
validity of dis_R2 is in the equation. The difference between
distances and positions of each line is defined by disczp.

Moreover, assigning high w,. can lead to the situation in
which less important preferences will not be considered during
stepwise linear regression. Therefore, searching for the best
combination of weights and preferences is crucial in order to
find better models than SLR is able to return.

V. CONCLUSION AND FURTHER WORK

Collecting data from various sources may not always be ef-
fective, in particular for historic years. For this reason, domain
expert knowledge might be of help to improve the process-
ing of numerical datasets and statistical learning. Therefore,
various expert-in-the-loop approaches are gaining attention
in recent years. However, expert knowledge and statistical
inference need to be carefully integrated. In this work, we
introduced Expert-in-the-loop Stepwise Linear Regression.
Feature selection was enhanced with expert preferences and
goal programming. We presented a use case in predicting
annual concentrations of two health-related air pollutants.

Future directions to improve the proposed approach include
extensions to the semi-supervised learning variant, e.g., with
data from sensors. Another idea is to improve the communi-
cation with experts and modeling of their expert preferences.
Expert knowledge could be represented in a more advanced
way, e.g., with the use of fuzzy sets. Finally, inclusion of
other important health-related air pollutants such as PM2.5,
combination of data of different spatial resolution (grid cell
sized), and handling of spatial autocorrelations with statistical
inference approach, see e.g., [12] remain open for future work.
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Table 11

MAE AND MAPE COMPARISON OF SUPERVISED STEPWISE LINEAR REGRESSION SLR, ADVANCED SLR WITH REPEATED PROCEDURE TO INCLUDE
VARIABLES ADV_SLR AND STEPWISE LINEAR REGRESSION WITH EXPERT PREFERENCES EXP_SLR. WEIGHTS w_e : 0.5.,0.6,0.7,0.8,0.9 ARE
CONSIDERED. EXPERIMENTS ARE AVERAGED FOR PREDICTION OF PM 10 CONCENTRATIONS IN 2018 AVERAGED ACROSS MONITORING SITES OF THE
NEUROSMOG DOMAIN. TRAIN AND TEST ARE THE MEAN VALUES ACROSS ALL GRID CELL SIZED CALCULATED FOR THE TRAIN AND TEST SETS,
RESPECTIVELY.

PM10 Mean of MAE

Method A A_test | B B_test | C C_test | D D_test | E E_test | F F test | G G_test | TRAIN | TEST
SLR 352 | 529 342 | 5.08 342 | 5.18 3.58 | 6.03 3.33 | 6.32 336 | 4.62 3.53 | 5.80 345 5.47
ADV_SLR 352 | 529 342 | 5.08 3.34 | 496 3.58 | 6.03 3.33 | 6.32 333 | 4.61 349 | 5.80 343 5.44

EXP_SLR | w_e=05 | 3.63 | 539 3.42 | 5.10 3.34 | 5.10 3.62 | 594 3.42 | 6.46 342 | 4774 348 | 5.79 3.48 5.50

EXP_SILR | w_e=0.6 | 3.74 | 536 3.47 | 5.12 3.34 | 5.10 3.62 | 5.94 3.51 | 6.54 347 | 474 3.53 | 5.78 3.52 551

EXP_SILR | w.e=0.7 | 374 | 528 3.60 | 5.13 3.41 | 5.06 3.69 | 6.03 3.62 | 642 3.57 | 471 3.63 | 470 3.61 5.33

EXP_SLR | w_e=0.8 376 | 523 371 | 5.10 3.56 | 4.65 3.69 | 6.03 3.62 | 642 3.57 | 471 3.63 | 4.70 3.65 5.26

EXP_SLR | w_e=0.9 | 3.80 | 522 3.73 | 5.06 3.56 | 4.65 3.69 | 6.03 3.62 | 642 3.57 | 471 3.63 | 470 3.66 5.26

PM10 Mean of MAPE

Method A A _test | B B_test | C C_test | D D_test | E E test | F F_test | G G_test | TRAIN | TEST
SLR 0.09 | 0.14 0.09 | 0.13 0.09 | 0.14 0.09 | 0.17 0.09 | 0.18 0.09 | 0.12 0.09 | 0.17 0.09 0.15
ADV_SLR 0.09 | 0.14 0.09 | 0.13 0.09 | 0.13 0.09 | 0.17 0.09 | 0.18 0.09 | 0.12 0.09 | 0.17 0.09 0.15

EXP_SLR | w_e=0.5|0.10 | 0.14 0.09 | 0.13 0.09 | 0.14 0.09 | 0.17 0.09 | 0.18 0.09 | 0.12 0.09 | 0.17 0.09 0.15

EXP_SLR | w_e=0.6 | 0.10 | 0.14 0.09 | 0.13 0.09 | 0.14 0.09 | 0.17 0.09 | 0.19 0.09 | 0.12 0.09 | 0.17 0.09 0.15

EXP_SLR | w_e=0.7 | 0.10 | 0.14 0.09 | 0.13 0.09 | 0.14 0.10 | 0.17 0.09 | 0.18 0.09 | 0.12 0.10 | 0.12 0.09 0.14

EXP_SLR | w_e=0.8 | 0.10 | 0.14 0.10 | 0.13 0.09 | 0.12 0.10 | 0.17 0.09 | 0.18 0.09 | 0.12 0.10 | 0.12 0.10 0.14

EXP_SLR | w_e=0.9 | 0.10 | 0.14 0.10 | 0.13 0.09 | 0.12 0.10 | 0.17 0.09 | 0.18 0.09 | 0.12 0.10 | 0.12 0.10 0.14

PM10 Standard deviation of MAE

Method A A_test | B B_test | C C_test | D D_test | E E_ test | F F_test | G G_test | TRAIN | TEST
SLR 0.88 | 1.55 0.80 | 1.32 0.40 | 1.56 0.61 | 4.18 0.82 | 4.41 0.92 | 145 0.72 | 3.39 0.74 2.55
ADV_SLR 0.88 | 1.55 0.80 | 1.32 0.40 | 1.28 0.61 | 4.18 0.82 | 441 094 | 145 0.72 | 3.39 0.74 2.51

EXP_SLR | w_e=0.5 | 0.84 | 1.49 0.80 | 1.32 0.40 | 1.29 0.58 | 4.23 0.87 | 421 0.90 | 1.40 0.73 | 3.39 0.73 248

EXP_SLR | w_e=0.6 | 0.76 | 1.50 0.78 | 1.30 040 | 1.29 0.58 | 423 0.86 | 4.15 0.90 | 1.40 0.70 | 3.40 0.71 2.47

EXP_SLR | w_e=0.7 | 0.76 | 1.56 0.71 | 1.22 042 | 1.23 0.65 | 4.71 0.89 | 4.15 0.90 | 1.38 0.87 | 1.34 0.74 223

EXP_SLR | w.e=0.8 | 0.74 | 1.56 0.71 | 1.08 0.32 | 1.28 0.65 | 471 0.89 | 4.15 0.90 | 1.38 0.87 | 1.34 0.73 2.21

EXP_SLR | w.e=09 | 072 | 1.57 0.69 | 1.10 0.32 | 1.28 0.65 | 4.71 0.89 | 4.15 0.90 | 1.38 0.87 | 1.34 0.72 2.22

PM10 Standard deviation of MAPE

Method A A _test | B B_test | C C_test | D D test | E E test | F F test | G G_test | TRAIN | TEST
SLR 0.03 | 0.04 0.02 | 0.03 0.01 | 0.05 0.02 | 0.13 0.02 | 0.15 0.03 | 0.04 0.02 | 0.13 0.02 0.08
ADV_SLR 0.03 | 0.04 0.02 | 0.03 0.01 | 0.04 0.02 | 0.13 0.02 | 0.15 0.03 | 0.04 0.02 | 0.13 0.02 0.08

EXP_SLR | w_e=0.5 | 0.03 | 0.04 0.02 | 0.03 0.01 | 0.04 0.02 | 0.14 0.02 | 0.15 0.03 | 0.04 0.02 | 0.13 0.02 0.08

EXP_SLR | w_e=0.6 | 0.02 | 0.04 0.02 | 0.03 0.01 | 0.04 0.02 | 0.14 0.02 | 0.15 0.03 | 0.04 0.02 | 0.13 0.02 0.08

EXP_SLR | w_e=0.7 | 0.02 | 0.04 0.02 | 0.03 0.01 | 0.04 0.02 | 0.15 0.02 | 0.15 0.03 | 0.04 0.03 | 0.04 0.02 0.07

EXP_SLR | w_e=0.8 | 0.02 | 0.04 0.02 | 0.03 0.01 | 0.03 0.02 | 0.15 0.02 | 0.15 0.03 | 0.04 0.03 | 0.04 0.02 0.07

EXP_SLR | w_e=0.9 | 0.02 | 0.04 0.02 | 0.03 0.01 | 0.03 0.02 | 0.15 0.02 | 0.15 0.03 | 0.04 0.03 | 0.04 0.02 0.07
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Table 111

MAE AND MAPE COMPARISON OF SUPERVISED STEPWISE LINEAR REGRESSION SLR, ADVANCED SLR WITH REPEATED PROCEDURE TO INCLUDE
VARIABLES ADV_SLR AND STEPWISE LINEAR REGRESSION WITH EXPERT PREFERENCES EXP_SLR. WEIGHTS w_e : 0.5.,0.6,0.7,0.8,0.9 ARE
CONSIDERED. EXPERIMENTS ARE AVERAGED FOR PREDICTION OF NO2 CONCENTRATIONS IN 2018 AVERAGED ACROSS MONITORING SITES OF
NEUROSMOG DOMAIN. TRAIN AND TEST ARE THE MEAN VALUES ACROSS ALL GRID CELL SIZED CALCULATED FOR THE TRAIN AND TEST SETS,
RESPECTIVELY.

NO2 Mean of MAE
Method A A_test | B B_test | C C_test | D D_test | E E_test | F F test | G G_test | TRAIN | TEST
SLR 2.81 | 7.98 321 | 6.67 329 | 648 4.33 | 6.86 4.37 | 7.88 4.00 | 6.50 4.25 | 6.73 3.75 7.02
ADV_SLR 2.81 | 7.98 3.18 | 6.64 329 | 648 4.33 | 6.86 4.37 | 7.88 4.00 | 6.50 4.25 | 6.73 3.75 7.01
EXP_SLR | w_e=0.5| 293 | 8.09 3.17 | 6.97 3.58 | 5.52 444 | 6.78 444 | 779 4.09 | 6.10 4.20 | 6.44 3.83 6.81
EXP_SLR | w_e=0.6 | 3.00 | 8.09 3.17 | 6.97 3.65 | 5.53 4.44 | 6.78 4.44 1 7.79 4.09 | 6.10 420 | 6.44 3.85 6.81
EXP_SLR | w_e=0.7 | 333 | 6.74 334 | 6.84 3.96 | 5.50 444 | 6.78 4.64 | 8.27 418 | 5.84 4.20 | 6.44 4.01 6.63
EXP_SLR | w_e=0.8 | 3.63 | 6.40 394 | 7.35 4.12 | 5.55 444 | 6.78 5.13 | 7.97 421 | 5.83 4.28 | 6.15 4.25 6.58
EXP_SLR | w_e=09 | 3.63 | 6.40 3.94 | 749 412 | 5.55 4.44 | 6.78 5.13 | 7.97 421 | 5.83 4.28 | 6.15 4.25 6.60
NO2 Mean of MAPE
Method A A _test | B B_test | C C_test | D D test | E E test | F F test | G G_test | TRAIN | TEST
SLR 0.14 | 0.34 0.17 | 0.29 0.17 | 0.33 0.23 | 0.33 0.22 | 0.34 0.19 | 0.31 0.22 | 0.32 0.19 0.32
ADV_SLR 0.14 | 0.34 0.17 | 0.29 0.17 | 0.33 0.23 | 0.33 0.22 | 0.34 0.19 | 0.31 0.22 | 0.32 0.19 0.32
EXP_SLR | w_e=0.5 | 0.15 | 0.33 0.17 | 0.29 0.19 | 0.27 0.23 | 0.33 0.22 | 0.33 0.21 | 0.29 0.22 | 0.30 0.20 0.31
EXP_SLR | w_e=0.6 | 0.16 | 0.33 0.17 | 0.29 0.19 | 0.27 0.23 | 0.33 0.22 | 0.33 0.21 | 0.29 0.22 | 0.30 0.20 0.31
EXP_SLR | w_e=0.7 | 0.17 | 0.31 0.18 | 0.29 0.20 | 0.27 0.23 | 0.33 0.23 | 0.34 0.22 | 0.27 0.22 | 0.30 0.21 0.30
EXP_SLR | w_e=0.8 | 0.18 | 0.31 0.20 | 0.32 0.20 | 0.27 0.23 | 0.33 0.25 | 0.34 0.23 | 0.27 0.23 | 0.29 0.22 0.30
EXP_SLR | w_e=09 | 0.18 | 0.31 0.20 | 0.32 0.20 | 0.27 0.23 | 0.33 0.25 | 0.34 0.23 | 0.27 0.23 | 0.29 0.22 0.30
NO2 Standard deviation of MAE
Method A A_test | B B_test | C C_test | D D_test | E E_test | F F test | G G_test | TRAIN | TEST
SLR 0.56 | 1.97 0.40 | 2.67 0.84 | 2.74 0.62 | 141 0.78 | 2.38 0.44 | 2.03 0.73 | 1.16 0.62 2.05
ADV_SLR 0.56 | 1.97 0.45 | 2.58 0.84 | 2.74 0.62 | 141 0.78 | 2.38 0.44 | 2.03 0.73 | 1.16 0.63 2.04
EXP_SLR | w_e=0.5| 0.56 | 1.73 0.49 | 2.99 0.76 | 1.30 0.67 | 1.50 0.68 | 2.32 0.52 | 2.17 0.83 | 1.14 0.64 1.88
EXP_SLR | w_e=06 | 048 | 1.73 0.49 | 2.99 0.78 | 1.32 0.67 | 1.50 0.68 | 2.32 0.52 | 2.17 0.83 | 1.14 0.64 1.88
EXP_SLR | w_e=0.7 | 0.54 | 2.09 0.63 | 2.99 0.67 | 1.09 0.67 | 1.50 0.60 | 3.01 0.54 | 2.06 0.83 | 1.14 0.64 1.98
EXP_SILR | w_e=0.8 | 0.74 | 1.88 0.77 | 2.40 0.50 | 1.08 0.67 | 1.50 0.98 | 2.90 0.48 | 2.05 0.89 | 1.04 0.72 1.84
EXP_SLR | w_e=09 | 0.74 | 1.88 0.78 | 2.59 0.50 | 1.08 0.67 | 1.50 0.98 | 2.90 0.48 | 2.05 0.89 | 1.04 0.72 1.86
NO2 Standard deviation of MAPE
Method A A_test | B B_test | C C_test | D D_test | E E_test | F F_test | G G_test | TRAIN | TEST
SLR 0.02 | 0.08 0.03 | 0.14 0.05 | 0.19 0.04 | 0.10 0.04 | 0.08 0.03 | 0.09 0.04 | 0.08 0.04 0.11
ADV_SLR 0.02 | 0.08 0.03 | 0.13 0.05 | 0.19 0.04 | 0.10 0.04 | 0.08 0.03 | 0.09 0.04 | 0.08 0.04 0.11
EXP_SLR | w_e=0.5 | 0.02 | 0.10 0.04 | 0.12 0.05 | 0.11 0.04 | 0.10 0.03 | 0.08 0.04 | 0.09 0.04 | 0.08 0.04 0.10
EXP_SLR | w_e=0.6 | 0.02 | 0.10 0.04 | 0.12 0.05 | 0.12 0.04 | 0.10 0.03 | 0.08 0.04 | 0.09 0.04 | 0.08 0.04 0.10
EXP_SLR | w_e=0.7 | 0.03 | 0.10 0.05 | 0.12 0.04 | 0.10 0.04 | 0.10 0.03 | 0.08 0.03 | 0.08 0.04 | 0.08 0.04 0.09
EXP_SLR | w_e=0.8 | 0.03 | 0.11 0.05 | 0.13 0.03 | 0.09 0.04 | 0.10 0.04 | 0.09 0.03 | 0.08 0.05 | 0.08 0.04 0.10
EXP_SLR | w_e=09 | 0.03 | 0.11 0.05 | 0.14 0.03 | 0.09 0.04 | 0.10 0.04 | 0.09 0.03 | 0.08 0.05 | 0.08 0.04 0.10
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